On The Interpolation of Injective or Projective Tensor Products of Banach Spaces

نویسنده

  • Omran Kouba
چکیده

We prove a general result on the factorization of matrix-valued analytic functions. We deduce that if (E0, E1) and (F0, F1) are interpolation pairs with dense intersections, then under some conditions on the spaces E0, E1, F0 and F1, we have [E0⊗̂F0, E1⊗̂F1]θ = [E0, E1]θ⊗̂[F0, F1]θ, 0 < θ < 1. We find also conditions on the spaces E0, E1, F0 and F1 , so that the following holds [E0 ∨ ⊗F0, E1 ∨ ⊗F1]θ = [E0, E1]θ ∨ ⊗[F0, F1]θ, 0 < θ < 1. Some applications of these results are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Moments of Banach Space Valued Random Variables

We define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. We study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals...

متن کامل

On character projectivity Of Banach modules

Let $A$ be a Banach algebra, $\Omega(A)$ be the character space of $A$ and $\alpha\in\Omega(A)$. In this paper, we examine the characteristics of $\alpha$-projective (injective) $A$-modules and demonstrate that these character-based $A$-modules also satisfy well-known classical homological properties on Banach $A$-modules.

متن کامل

On Tensor Products of Operator Modules

The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.

متن کامل

Rearrangement Inequality and Chebyshev’s Sum Inequality on Positive Tensor Products of Orlicz Sequence Space with Banach Lattice

Let φφ be an Orlicz function that has a complementary function φφ∗ and let llφφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev’s Sum Inequality in llφφ⨂� FFXX, the Fremlin projective tensor product of llφφ with a Banach lattice X, and in llφφ⨂� iiXX, the Wittstock injective tensor product of llφφ with a Banach lattice X.

متن کامل

On Minimal Subspaces in Tensor Representations

In this paper we introduce and develop the notion of minimal subspaces in the framework of algebraic and topological tensor product spaces. This mathematical structure arises in a natural way in the study of tensor representations. We use minimal subspaces to prove the existence of a best approximation, for any element in a Banach tensor space, by means a tensor given in a typical representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991